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INTRODUCTION
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a-HEATING DOMINATES IN BURNING PLASMA

e Burning plasmas: auxiliary heating used, but more significant plasma self-
heating is by fusion alphas — plasma becomes exothermic medium

e The leading-order alpha-heating effects may be identified in accordance with
Q=Prus/P,

Q=1 -at the threshold (JET had Q = 0.6 in record fusion power DT plasma)
Q = 5 — alpha-effects on heating profile and Alfvén instabilities

Q =10 - nonlinear coupling between alphas, MHD stability, bootstrap current,
turbulent transport, interaction plasma-boundary (ITER target)

Q 2 20 — burn control and transient ignition phenomena

Q —o - ignition

e Control of burning plasma in the presence of more powerful actor — a-
particles can hardly rely on a single “power knob”, more intelligent
approaches are needed.
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GENERAL THOUGHTS ON CONTROL

e The focus of the techniques must be on essential EP parameters: radial
gradients and possible bump-on-tail regions in the velocity space

e In the case of resonant wave-particle interaction the focus should be on
small but very sensitive regions of EP phase space around the resonances

e EP-driven instabilities can be controlled via manipulating equilibrium profiles
for increased damping of the relevant modes, e.g. increase of continuum
damping for TAE case. This involves thermal plasma optimisation.

e A search for several possible control “knobs” is essential. The use of
auxiliary power knob alone is rarely effective as nearly maximum power is
used anyway.

e In practice, actuators affect multiple mechanisms, e.g. ECCD aiming at q-
profile change, changes plasma pressure etc.
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CONTROL OF RADIAL PROFILE OF ENERGETIC IONS
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Wave-Induced Energetic Particle Pinch Driven by
Toroidally Asymmetric ICRF Waves

L.-G.Eriksson et al., Phys. Rev. Lett 81 (1998) 1231
M.J.Mantsinen et al., Phys. Rev. Lett. 89 (2002) 115004
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ESSENTIAL WAVE-PARTICLE INVARIANT

e The unperturbed orbit of a particle is determined by three invariants:

Mvi EEMVZ_
2 2

e
p= P, E—Ey/(r)+ RMv,

e In the presence of a single EM mode with wave field oc €XpP i(ngo—a)t), where n is

toroidal mode number, the wave-particle interaction is invariant with respect to
transformation

t—)t—l—T; (D—)(D-I—QT
n

e This implies that though in the presence of ICRF wave, neither E nor P, is conserved
for interacting ion orbit, their following combination is still invariant:

E—2P = const
n

e Change in the particle energy is related to change in particle radius then

AE =2 AP =Ly nr
n nc
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and it depends on the sign of n!
TOROIDALLY PROPAGATING ICRF WAVES

Current straps

FIG. 1. Schematic view of the JET tokamak seen from above.
The directions of the plasma current /p, toroidal field Br,
poloidal field Bp, and the launched wave in the case of +90°

phasing are shown.
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THE RADIAL PINCH EFFECT

e Depending on the phase shift in RF antenna current straps, we can launch
wave co-propagating with plasma current (n>0, +90° or counter-propagating
(n<0, -90).

e Since the energy of resonating ion increases, we obtain the change in Py

APy = (n/w) AE

determined by the sign of n.

e Depending on the sign of n, the population of ICRF-accelerated fast ions
becomes either more peaked in radius (+90° phasing) or more flat (-90°).
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Evidence for a Wave-Induced Particle Pinch in the Presence
of Toroidally Asymmetric ICRF Waves (1998)
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Modelling of fast ion distributions in the two comparison pulses
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FIG. 6. Simulated fast 1on pressure profiles.
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Controlling the Profile of lon-Cyclotron-Resonant 3He lons in JET
with the Wave-Induced Pinch Effect (2002)

Pulse No: 54239 (+90°, — ), 54243 (-90°, ---) 16
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FIG. 1. Overview of two 3.457/1.8 MA JET “He discharges
with *He minority heating using +90° and —90° phasings.
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(b) 54243 (-90°)

emission from nuclear reaction *C(*He, py )**N between ICRF-
accelerated 3He ions and C impurity
(a) 54239 (+90°)

Fast ion profiles were measured with 2D y-ray camera from y-ray

9g-48'200r

20 25 3.0 35
R (m)

R (m)

20 25 3.0 35
profile, normalized to the peak emissivity. The lines of sight

of the neutron profile monitor are shown in (a) and the ICRF

FIG. 2. Contour plots of the reconstructed y-ray emission
resonance location in (b).
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Mitigation of Alfvén Activity in a Tokamak by
Externally Applied Static 3D Fields
A.Bortolon et al., PRL 110, 265008 (2013)
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NSTX DISCHARGES WITH BEAM-DRIVEN AEs

NSTX 138146
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Z0O0OM OF THE OBSERVATIONS:
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FAST ION POPULATION FALLS BY =15% AT THE RESONANCE
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FIG. 5 (color online). Velocity space representation of the
slowing-down (SD) distribution function F(E, p) in the plasma
core, as computed by SPIRAL (a) before the MP and (b) its
variation after 1 ms from the application of the MP including
plasma response. The curves overplotted indicate loci of possible
resonance between fast ions and a mode at 520 * 40 kHz. Lower
values of F and 9 F/dv | along the resonance curve are found in
the presence of MP (c), (d). Data in (c), (d) and in the inset of
(b) are from simulations with enhanced statistical accuracy.
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SUPRESSION OF AEs IN REVERSED-SHEAR DISCHARGES
WITH ECRH
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REVERSED-SHEAR AE SUPPRESSION BY ECRH ON DIII-D

M. Van Zeeland et al., PPCF 50 (2008) 035009
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INTERPRETATION: THE AC FREQUENCY BAND BETWEEN GAMs AND
TAEs SHRINKS AS PRESSURE AND PRESSURE GRADIENT INCREASE

1/2
| 2 1 V
fGAMgzﬂ_(MiRg |:Te+_T1:|j SfACSfTAEEAI-]gRO

:'#1 '577'35l » l:‘—'.‘; : ' ; ‘ :__, v 1RT(:1) R #157735 ECH near-gmin
i BT T e o D T
2.0 N 5 QGW"'“ ‘:5:;_":_,’ o AR =
N N
L i Rl g
1 5- ll' ? 191 g X3 o o
- [ 11.95 (Il TAE o RSAEs Return
o ( ] '
- o g 3 1'97 300 400 500 600 700 800 900 1000
s - 12.02 Time (ms)
~ 1.0 —§ aps o
; - 2-06 g 1 n=9
B i N =8
N 2.10 3 120 2=7
0.5LH =49 15 3 100 n=s
y ‘ ] o n=4
- @)’ 2.19 g g
= 1 w n=2
0.0 1 1 | ! 1 1 | ! ! ! | ! ! 1

s e O L IR Ty
300 400 500 600 700 800 900 1000
Time (ms)

M.A.Van Zeeland et al., Nucl. Fusion 56 (2016) 112007
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SIMILAR EXPERIMENT WAS PEFFORMED ON AUG
M.Garcia-Munoz et al. (2018)
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COMPLETE SUPPRESSION OF SIMILAR MODES WAS ACHIEVED

10 T T T

#31541 0.4963s
ECESpectrogram/Nest ., oL TRANSP/FIDASIM Jgo50e
ECRH Near Axis #31541 0.5038s
)]
w 0.6+
m
: T3 g
N E 04“
z
. 02k
0.0 660.0-661.p nm ) ) ]
2 X 0.0 0.2 0.4 0.6 0.8
250 300 350 400 450 500 550 600 ppol
Time (ms)
1.0 T T T
ECRH Near q,,;, 1540 #31545 0.4963s
0.4988
0.8F TRANSP/FIDASIM ¢ 5013e-
0.5038s
? w0
g % 0.6k
- 2
[m) L
T 04
- " . [ § . 0.2
250 300 350 400 450 500 550 600
Time (ms) 0.0 660.0-661.9 nm : )
0.0 0.2 0.4 0.6 0.8
pDol

@, UK Atomic Energy Authority ~ S.E.Sharapov, 12" ITER International School, 26 June 2023



SIMILAR EFFECTS HAVE SINCE BEEN REPRODUCED ON TJ-lII,
LHD, Heliotron-J, and KSTAR:

1. Nagaoka K. et al 2013 Nucl. Fusion 53 072004

2. Nagasaki K. et al 2012 IAEA FEC, EX/P8-10
3. Kim J. 2018 APS DPP
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This effect was then perfected on DIII-D and active real-time

control of AEs by NBI and ECH was demonstrated !
W.Hu et al 2018 Nucl. Fusion 58 124001
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Figure 2. Diagram of the proportional-integral AE control system in the DIII-D PCS. ‘Category’ refers to different functional areas in the

PCS software architecture that enable both operators and control designers to organize control operations by relevant actuators, diagnostics,
or control goals.
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TESTING THE MODE RESPONSE TO NBI POWER MODULATION

#172183
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Figure 3. Discharge 172183. (a) Pre-programmed NBI power, (b) AEs amplitude represented by electron temperature measured by ECE,
(¢) CO; interferometer cross power spectrum.
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EXAMPLE OF THE NBI POWER CONTROLLED BY AE AMPLITUDE
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Figure 4. Discharge 172343. (a) ECE spectrum. (b) AE controller requested NBI power (blue line) and actual response NBI power (red
1 )
1

ine), (¢) measured neutrons production rate over TRANSP predicted classical neutrons production rate and (d) target AE amplitude (blue
ine) and real-time ECE measured AE amplitude (red line).
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FORWARD TO ECRH/ ECCD EFFECTS ON TAEs
(More ITER relevant)
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THE IDEA OF ECRH/ ECCD EFFECT ON TAE IN ITER

ECRH/ECCD may be applied in a prescribed narrow region in order to form a
TAE-free transport barrier preventing radial transport of alpha-particles
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ECRH/ TAE EXPERIMENTS ON AUG (2014-2016)
S E Sharapov et al 2018 Plasma Phys. Control. Fusion 60 014026
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e TAE frequency sweeps down fast as plasma density increases

e Facilitation of TAE instability due to off-axis ECRH was observed!
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SLOWING-DOWN TIME AND Wsast INCREASE DURING ECRH
SELFO results for AUG #33150, from 2.0sto 2.6 s:

e Up to ~40% higher fast ion energy content Wrast with ECRH applied off-axis;
e Strong correlation between Wrast and TAE activity;

e Wisast increases due to longer slowing-down time;

e Fastion pressure gradient is significantly higher with ECRH when TAEs appear.

Wrast (kJ)

Pressure (kPa)

2 21 22 23 24 25 26

Time (s)

r/a
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COMING TO CURRENT DRIVE NOW:
ECCD/ TAE EXPERIMENT ON AUG (30 June 2020)

e Excite TAEs with ICRH-accelerated ions at P,cru=const:

e Apply ECCD at ~prag, vary Pecco, find threshold for TAE stabilization;

4rF
§ 3E I ) A ~ A A — ECRHE
< of i — ICRH ]
fa F — NBI ]
1 i ]
I #38019 }
160 \
pli
= | Al
= 140 it ,
% L "l \/‘/w | h
g . |
= ol LR
120 |- L \ h i
i i
| 1 [ | 1|
[
(IE 1 I A1 -t
100 MI‘ | AL L | wlaft] | L | L
1 1.5 2 2.5 3 3.5 4

Time (s)

@, UK Atomic Energy Authority ~ S.E.Sharapov, 12" ITER International School, 26 June 2023

33



SUMMARY ON ECCD/TAE RESULTS OBTAINED:
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SUMMARY ON ECCD/TAE EXPERIMENT ON AUG - cont’d
e 4 comparison discharges were performed on AUG:
o #38012 (ECRH Reference)

#38017 (Counter-ECCD)
#38018 (Co-ECCD)
#38019 (Co-ECCD, smaller steps in Peccop)

e Two branches of TAEs were identified residing at p~0.4 (f~125 kHz) and p~0.6
(f~150 kHz), #38012

e Counter-ECCD at p~0.5 suppressed TAEs at p~0.4 (f~150 kHz), but greatly
amplified and prolonged to ~6.5 s TAEs at p~0.6 (f~125 kHz), #38017

e C0-ECCD applied also at p~0.5, but with a broader deposition profile
suppressed ALL TAEs at Peccp > 2.7 MW, #38018, 38019.
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TAE SUPPRESSION IS DUE TO CONTINUUM DAMPING INCREASE

aug #38018 @ ['1.500,, '2.000,', '2.500,', '3.000,', '3.500,', '4.000,']
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SUPPRESSION OF NBI-DRIVEN MODES BY
ICRF AT HIGH HARMONIC ON NSTX-U
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High Harmonic Fast Wave suppression of both TAE and
GAE
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@ NSTX-U 18" Workshop on MHD Stability Control — Control of Energetic Particle driven modes, E Fredrickson (18/202013) 8

E.Fredrickson et al. ,18" Workshop MHD Control, Santa Fe, New Mexico, 2013
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An alternate explanation to enhanced diffusivity is that the
HHFW depletes the resonant fast ions

» Modes are excited through
Doppler-shifted cyclotron
resonance

i = Omoge T KV,

100 rrrrrrrrp
-a)04<rla<0.5 Sad @

» Indicated by red (initial
frequency) and blue (final
frequency) curves,

lon Energy (keV)
3

— most likely the resonant fast
ions are on stagnant orbits

 HHFW will increase 1.0 ‘ 0.01.0

perpendicular energy, Pitch (V,/V)
reducing drive for modes. I

@D NSTX-U 18" Workshop on MHD Stability Control — Control of Energetic Particle driven modes, E Fredrickson (18/202013) 8
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SUMMARY

Control of EP and EP-driven instabilities is a real challenge in burning plasma
with high Q

Possible EP radial gradient control with toroidally-propagating ICRH and with
externally applied static 3D fields were established

Mitigation of AEs in reversed-shear configurations with ECRH applied at gmin
became mature up to the level of real-time control

ECRH was found to facilitate TAEs on AUG
ECCD was found to do “anything” on AUG depending on the directivity

Suppression of NBl-driven AEs with HHFW was demonstrated on NSTX-U
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